
 1

Cutting Through the Noise: An Introduction to

RDF & LPG Graphs

Definitions, Comparisons, and Common Questions
Benjamin Kass

Graph is good. From capturing business
understanding to support standardization and
data analytics to informing more accurate LLM
results through Graph-RAG, knowledge graphs
are an important component of how modern
businesses translate data and content into
actionable knowledge and information. For
individuals and organizations that are beginning
their journey with graph, two of the most puzzling
abbreviations that they will encounter early on are
RDF and LPG. What are these two acronyms,
what are their strengths and weaknesses, and
what does this mean for you? Follow along as this
article walks through RDF and LPG, touching on
these and other common questions.

Definitions

RDF

To paraphrase from our deep dive on RDF, the
Resource Description Framework (RDF) is a
semantic web standard used to describe and
model information. RDF consists of “triples,” or
statements, with a subject, predicate, and object
that resemble an English sentence; RDF data is
then stored in what are known as “triple-store
graph databases”. RDF is a W3C standard for
representing information, with common
serializations, and is the foundation for a mature
framework of related standards such as RDFS
and OWL that are used in ontology and
knowledge graph development. RDF and its
related standards are queried using SPARQL, a
W3C recommended RDF query language that

uses pattern matching to identify and return graph
information.

LPG

A Labeled Property Graph (LPG) is a data model
for graph databases that represents data as
nodes and edges in a directed graph. Within an
LPG, nodes and edges have associated
properties such as labels that are modeled as
single value key-value pairs. There are no native
or centralized standards for the creation of LPGs;
however, the Graph Query Language (GQL), an
ISO standardized query language released in
April 2024, is designed to serve as a standardized
query template for LPGs. Because GQL is a
relatively recent standard, it is not yet adopted by
all LPG databases.

What does this mean? How are they
different?

There are a number of differences between RDF
graphs and LPGs, some of which we will get into.
At their core, though, the differences between
RDF and LPG stem from different approaches to
information capture.

RDF and its associated standards put a premium
on defining a conceptual model, applying this
conceptual model to data, and inferring new
information using category theory and first order
logic. They are closely tied to standards for
taxonomies and linked data philosophies of data
reuse and connection.

https://www.w3.org/RDF/
https://enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/
https://enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/
https://enterprise-knowledge.com/why-am-i-mr-sparql/

 2

LPGs, by contrast, are not model-driven, and
instead are more concerned with capturing data
rather than applying a schema over it. There is
less of a focus on philosophical underpinnings
and shared standards, and more importance
given to the ability to traverse and mathematically
analyze nodes in the graph.

Specific Benefits & Drawbacks
of Each

RDF

Plusses:

• Self-Describing: RDF describes both data
and the data model in the same graph

• Data Validation: RDF can validate data
and data models using SHACL, a W3C
standard

• Expressivity: RDF and its larger semantic
family is well suited to capturing the
logical underpinnings and human
understanding of a subject area.

• Flexible Modeling: RDF was originally
designed for web use cases in which
multiple data schemas / sources of truth
are aggregated together. Due to this
flexibility, RDF is useful in aligning
schemas and querying across
heterogeneous / different datasets, as
well as metadata management and
master data management

• Global Identifiers: Entities in the graph are
assigned (resolvable) URIs. This has
enabled the creation of open source
models for both foundational concepts
such as provenance and time, as well as
domain specific models in complex
subject areas like Process Chemistry and
Finance that can be utilized and reused.

• Standardization: Wide standard
implementation enables simple switching
between vendor solutions

• Native Reasoning: OWL is another W3C
standard built on RDF that enables logical
reasoning over the graph using category
theory

Minuses:

• High Cognitive Load: Due to the
mathematical and philosophical
underpinnings it can take more time to
come up to speed on how to model in
RDF and OWL

• Complexity of OWL Implementations:
There are a number of different standards
for how to implement OWL reasoning,
and it is not always clear even to some
experienced modelers which should be
used when

• N-ary Structures: RDF cannot model
many-to-many relationships. Instead,
intermediary structures are required,
which can increase the verbosity of the
graph.

• Property Relations: Relationships cannot
be added to existing properties in base
RDF, restricting the kinds of statements
that can be made. An RDF standard to
extend this functionality, RDF*, is
available in some triple-stores but is still
under development and not consistently
offered by vendors.

LPG

Plusses:

• Efficient Storage: LPGs are generally
more performant with large datasets, and
frequently updated data compared to
RDF

• Graph Traversal: LPGs were designed for
graph traversal to facilitate clustering,
centrality, shortest path, and other
common graph algorithms to perform
deep data analysis.

• Analytics Libraries: There are a number of
open source machine learning and graph
algorithm libraries available for use with
LPGs.

• Developer-Friendly: LPGs are often a first
choice for developers since LPGs’ data-
first design and query languages more
closely align to preexisting SQL expertise.

• Property Relations: LPGs support the
ability to attach relationships on
properties natively.

Minuses:

 3

• No Formal Schema: There is not a formal
mechanism for enforcing a data schema
on an LPG. Without a validation
mechanism to ensure adherence to a
model, the translation of data into entities
and connections can become fuzzy and
difficult to verify for correctness.

• Vendor Lock-In: Tooling is often
proprietary, and switching between LPG
databases is difficult and inflexible due to
the lack of a common serialization and
proliferation of proprietary languages.

• Lack of Reasoning: There are no native
reasoning capabilities for logical
inferences based on class inheritance,
transitive properties, and other common
logical expressions, although some tools
have plug-ins to enable basic inference.

Common Questions

Which do I use for a knowledge graph?

Although some organizations define knowledge
graphs as being built upon RDF triple stores, you
can use either RDF or LPG to develop a
knowledge graph so long as you apply and
enforce adherence to a knowledge model and
schema over your LPG. Managing and applying a
knowledge model is easier within RDF, so it is
often the first choice for knowledge graphs, but it
is still doable with LPGs. For example, in his book
Semantic Modeling for Data, Panos Alexopoulos
references using Neo4j, an LPG vendor, to
represent and store a knowledge graph.

Is it easier to use an LPG?

LPGs have a reputation for being easier to use
because they do not require you to begin by
developing a model, unlike RDF, allowing users to
quickly get started and stand up a graph. This
does not necessarily translate to LPGs being
easier to use over time, however. Modeling up
front helps to solve data governance questions
that will come up later as a graph scales.
Ultimately, data governance and the need for a
graph to reflect a unified view of the world,
regardless of format, mean that the work which
happens to model up-front in RDF also ends up
happening over the lifetime of an LPG.

Which do I need to support an LLM with
RAG?

Graph-RAG is a design framework that supports
an LLM by utilizing both vector embeddings and a
knowledge graph. Either an LPG or an RDF graph
can be used to power Graph-RAG. Semantic
RAG is a more contextually aware variant that
uses a small amount of locally stored vector
embeddings and an RDF data graph with an RDF
ontology for its semantic inference capabilities.

Do I have to choose between RDF and
LPG when creating a graph?

It depends. We have seen larger enterprises
embrace both in instances where they want to
take advantage of the pros of each. For example,
utilizing an RDF graph for data aggregation
across sources, and then pulling the data from the
RDF graph into an LPG for data analysis.
However, if you are within a single graph
database tool/application, you will be required to
choose which standard you want to use.
Although there are graph databases that allow
you to store either RDF or LPG, such as Amazon
Neptune, these databases lock you into RDF or
LPG once you select a standard to use for
storage. Neptune does allow users to query over
data using both SPARQL and property graph
query languages, which bridges some of the gaps
in RDF and LPG functionality. As of the time of
writing, however, Neptune is less feature rich for
RDF and LPG data management than
comparable purely RDF or purely LPG databases
such as GraphDB and Neo4J.

Can I use both?

You can use RDF and LPGs together, but there
are manageability concerns when doing so.
Because there are no formal semantic standards
for LPGs in the same way as there are for RDF, it
is generally destructive to move data from an LPG
into an RDF graph. Instead, the RDF graph
should be used as a source of logical reasoning
information using constructs like class
inheritance. Smaller portions of the RDF graph,
called subgraphs, can then be exported to the
LPG for use with graph-based ML and traversal-
based algorithms.

https://www.oreilly.com/library/view/semantic-modeling-for/9781492054269/

 4

See Appendix for a sample architecture that
utilizes both RDF and LPG for entity resolution.

Which should I choose if I want to use
programming languages like Python and
Java?

Both RDF and LPG ecosystems offer robust
support for both Java and Python, each with
mature libraries and dedicated APIs tailored to
their respective data models. For RDF, Java
developers can leverage tools like RDF4J, which
provides comprehensive support for constructing,
querying (via SPARQL), and reasoning over RDF
datasets, while Python developers benefit from
RDFlib’s simplicity in parsing, serializing, and
querying RDF data. In contrast, LPG databases
such as Neo4j deliver specialized libraries—
Neo4j’s native Java API and Python drivers like
Py2neo or the official Neo4j Python driver—that
excel at handling graph traversals, pattern
matching, and executing graph algorithms.
Additionally, these LPG tools often integrate with
popular frameworks (e.g., Spring Data for Java or
NetworkX for Python), enabling more
sophisticated data analytics and machine learning
workflows.

How should I choose between RDF and
LPG?

How are you answering business use cases with
the graph? What kind of queries will you be
asking/running? That will determine which graph

format best fits your needs. Regardless of model
or standard, when defining a graph the first thing
to do is to determine personas, use cases,
requirements, and competency questions. Once
you have these, particularly requirements and
competency questions, you can determine which
graph form best fits your use case(s). To help
clarify this, we have a list of use case-based rules
of thumb.

Use Case Rules of Thumb

See Appendix for guidance on use cases
between LPG and RDF.

Conclusion

Both RDF and LPGs have relative strengths and
weaknesses, as well as preferred use cases.
LPGs are suited for big data analytics and graph
analysis, while RDF are more useful for data
aggregation and categorization. Ultimately, you
can build a knowledge graph and semantic layer
with either, but how you manage it and what it can
do will be different for each. If you have more
questions on RDF and LPG, reach out to EK with
questions and we will be happy to provide
additional guidance.

Enterprise Knowledge (EK) is a services firm that integrates Knowledge Management, Information
Management, Information Technology, and Agile Approaches to deliver comprehensive solutions. Our

mission is to form true partnerships with our clients, listening and collaborating to create tailored,
practical, and results-oriented solutions that enable them to thrive and adapt to changing needs.

Our core services include strategy, design, and development of Knowledge and Information

Management systems, with proven approaches for Taxonomy Design, Project Strategy and Road
Mapping, Brand and Content Strategy, Change Management and Communication, and Agile

Transformation and Facilitation. At the heart of these services, we always focus on working alongside
our clients to understand their needs, ensuring we can provide practical and achievable solutions on

an iterative, ongoing basis.

info@enterprise-knowledge.com | 571-403-1109 | @EKConsulting

https://enterprise-knowledge.com/contact-us/
https://enterprise-knowledge.com/contact-us/

 5

Appendix

Figure One: Sample Architecture

Figure Two: Use Case Rules of Thumb

	Cutting Through the Noise: An Introduction to RDF & LPG Graphs
	Definitions, Comparisons, and Common Questions

